
Delphi is based on compo-
nents. This means we have a

new way of optimising our
applications. Traditionally, we’ve
used a tool like Turbo Profiler to
find the efficiency bottle-necks in
our application: a top down
approach. With Delphi, the appli-
cation consists of components
that interact together, so we can
use a bottom up approach, where
we leave the application itself in-
tact, but focus on optimising the
underlying components. Without
changing one line of code in the
application itself, we can increase
performance by installing faster
versions of the used components.

Performance Optimisation
Hopefully, it is common knowledge
that many applications contain
small parts of code which are
responsible for major parts of the
execution time. This three-part
series of articles will focus on opti-
misation techniques for program
execution speed and program size.
If we can write faster, smaller
programs, we can gain that little
extra to discriminate us and our
applications from the rest!

In order to do so, we must first
divide the process of performance
optimisation into six major phases:

1. We need to customise our
Delphi compiler and linker options
for maximum efficiency.

2. We must identify bottle-necks,
using Turbo Profiler or another
profiling or timing tool. We will
examine tools to measure the
number of times a statement block
is executed, and several methods
of timing these statement blocks.
Statement blocks may be state-
ments, but also macros, proce-
dures, functions, units and whole
programs. We can find the
performance bottle-necks using
these techniques. It will turn out
that even small improvements in
these bottle-necks will often have
more effect than big improvements
in non-bottle-neck areas.

Performance Optimisation Part 1
by Bob Swart

3. We should examine the data
structures and algorithms of the
bottle-necks found in step 2 and try
to find more efficient equivalents.
We will see that the largest per-
formance improvements can come
from changing algorithms and data
structures. A more specific solu-
tion to a problem might be less
flexible, but can often be an order
of magnitude faster!

4. If step 3 fails, we should
examine the source code and look
for more efficient VCL methods,
properties or language constructs
to use in the data structures and
algorithms.

5. If step 4 fails, we should
examine a mixed ObjectPascal/
Assembly listing and then try to
rewrite the algorithms, routines or
statements in Assembler, using
external linked assembler object
code, BASM or InLine macros.

6. If the code is now as fast as
possible, we can try to minimise its
size, looking at code size, data size,
stack space, heap space and over-
all executable size. Sometimes, we
might even prefer optimisations
for size rather than speed.

A step can fail in two ways: firstly
if it simply cannot be done and
secondly if it doesn’t deliver the
required performance result.

First Things First
Before we even start to think about
performance optimisation, it is
time to check out the compiler
options: although they have less
impact than a bad algorithm, they

can seriously slow down your code
and expand your total code size.
My personal project options are
shown in Figure 1 (note the
checked “Default”, which means
that these options are now default
for every new project).

In the IDE we can easily obtain
the current settings of the compiler
directive by typing Ctrl+O-O in
edit-mode. The current settings
will then be inserted at the begin-
ning of the source as compiler
directives. We can change them to
our liking and also make sure a re-
compile on another user’s system
(with perhaps other general com-
piler options set) still yields the
same results. You can also view the
options in the project’s .OPT file.

Finding Bottle-Necks
Never think you know where per-
formance bottle-necks are in your
code. Always measure with some
kind of tool. Use Turbo Profiler, or
one of the other profiling tech-
niques we will examine here, but
never think you know before you
measure. We could accidentally be
right, but when using profiling
tools and techniques we’ll be sure
to find all the bottle-necks!

When using Turbo Profiler, we
need to set the following compiler
and linker options: {$D+,L+,Y+} (in
the IDE, see Figure 1, check Debug
information, Local symbols and
Symbol info) and include the TDW
debug info in the executable
(Turbo Profiler and Turbo Debug-
ger are actually internally similar).

➤ Figure 1 Compiler and linker options

November 1995 The Delphi Magazine 39

Unfortunately, Delphi does not
currently ship with a Profiler and
the Turbo Profiler 2.2 with Borland
Pascal is unable to read the debug
format of Delphi. You’ll need Turbo
Profiler 4.5, from Borland C++ 4.5.

Using Turbo Profiler, we can
apply a top-down search for the
bottle-necks. First we must identify
the component which takes most
of the execution time. Within this
component, we have to identify the
methods that take up most time.
Finally, we can profile all lines
within this time-eating method.

Alternatively, or if you don’t
have Turbo Profiler, we can imple-
ment our own timing methods us-
ing either the Windows System
Clock or the Reps Timer technique.

The GetTickCount API gives us
the number of milliseconds since
Windows was started. The
accuracy of this API, however, is
only 55 ms, as it is updated 18.2
times each second (just like the
real mode system clock). Hence,
we should use GetTickCount only
for very rough measurements.

From the MMSYSTEM.DLL we can
use the function timeGetTime (at
index 607), which returns a LongInt
and is accurate to one millisecond!

These two APIs only show the
total time that has elapsed during
a certain operation, without taking
into account the time that other
applications consumed. For better
measuring, we can use the
TOOLHELP.DLL function TimerCount
which gives the time spent in our
virtual machine only.

Sometimes a given routine or
piece of code is just too fast to be
timed by the above System Clock

technique. Can this piece of code
still be a bottle-neck? Yes it can, for
example when called thousands or
millions of times. In these cases,
like a tight loop, even the smallest
change counts. To measure these
kind of fast routines or statements
we can’t use the system clock
timer, because its resolution isn’t
good enough. We need the Reps
Timer: a small routine which
doesn’t count the execution time of
a piece of code, but just counts the
number of times it can be executed
in one (or more) clock ticks. We
can use this count to compare sev-
eral blocks of code against each
other. See Listing 1 for an example.

Now we can measure the number
of executions of a function per
clock-tick. Note that we have some
overhead from incrementing Reps
every time in the loop, and from
checking whether StartTick is
already equal to GetTickCount. As a
consequence, a piece of code that
does twice as many Reps is
probably more than twice as fast.

Algorithms & Data Structures
Once we’ve found the bottle-necks
in our application, the next thing
we must do is check the algorithm
or data structures. Often, by over-
coming inefficiency here we can
speed up the application by an
order of magnitude. Examples of
more efficient algorithms to
replace an inefficient one are: a
Binary Search to replace a Linear
Search, a Quick Sort to replace a
Bubble Sort, or a BTree to replace
a linear linked list.

A Real-Life Example
What better way to illustrate this
point than by building an applica-
tion? Drop a DriveComboBox,
DirectoryOutliner, a FileListBox
and a few Buttons on a form, like
Figure 2. Connect the DriveComboBox
with the DirectoryOutLiner and
the DirectoryOutLiner with the
FileListBox as shown in Listing 2.

If we run the example program,
we see that it takes a noticeable
time to load the directory outliner.
If we change to a directory with
many subdirectories and open it
up for the first time, we may have
to wait more than 10 seconds
before the outliner is re-drawn.
Let’s try to decrease this time to
less than 1 second!

Since we have already found out
that there is a possible bottle-neck
in the TDirectoryOutline compo-
nent, I fired up Turbo Profiler 4.5
and marked each method of
TDirectoryOutline as an active area
for the profiler. After running the
program for a short while, I found
that the Expand, Click and
BuildOneLevel methods were the
three greatest time-consumers.

There is an important danger we
need to be aware of when using
Turbo Profiler on a Windows appli-
cation. Are we measuring internal
calculations, or are we measuring
end-user reaction times and input
speed to the user interface? The
procedure Click is just an user
input event handler. Also, within
Expand, the call to inherited Expand
(Listing 3) is just a call to paint the
outliner on the screen.

➤ Figure 2program CrtApp;
uses WinCrt, WinProcs;
var StartTick: LongInt;
 Reps: LongInt;
begin
 Reps := 0;
 StartTick := GetTickCount;
 while StartTick = GetTickCount
 do {wait for end of Tick};
 StartTick := GetTickCount;
 repeat
 { call your test function }
 Inc(Reps);
 until StartTick <>
 GetTickCount;
 writeln(Reps);
end.

➤ Listing 1

40 The Delphi Magazine Issue 4

So, going back to Turbo Profiler,
I narrowed my search to examine
the time spent in each line of the
Expand and BuildOneLevel proce-
dures. The two major time eaters
are part of a linear search algo-
rithm in procedure BuildOneLevel
used to place new nodes in alpha-
betic order under their parent: see
the red lines in Listing 4.

If you check out the source code
of TDirectoryOutline (in \DELPHI\
SOURCE\SAMPLES), you can find the
bottle-neck. It uses an very slow
linear insertion method to add new
subdirectory entries to a directory
in the outliner. We could disable
the sorting, but a better solution is
to use a faster algorithm!

Bottom-Up Efficiency
In order to enhance the perform-
ance of TDirectoryOutline, we have
to modify DIROUTLN.PAS. (I made
a copy of this file and put it in my
project directory; now, the en-
hancements I make in this “local”
DIROUTLN.PAS will affect the
whole project, since the “local”
version overrides COMPLIB.DCL).

I call this feature “bottom-up
efficiency”, as it enables us to write
more efficient versions of compo-
nents and enhance efficiency by
simply recompiling the applica-
tions that use these components!
Specifically, if we use a better
algorithm (like binary insertion)
for TDirectoryOutline, we can get a
tenfold increase in speed. Now, a
directory with 100 subdirectories
takes under a second to load.

The binary insertion code I used
for the tenfold increase in speed is
placed in a local routine of
procedure BuildOneLevel as shown
in Listing 5. Don’t forget to replace
the two bottle-neck lines in
BuildOneLevel with a single call to
FindIndex, like so:

TempChild :=
 FindIndex(RootNode,
 SearchRec.Name); { Dr. Bob }

Conclusions
In this first part of the series we’ve
seen a structured performance
optimisation process, where we
(top-down) break down the appli-
cation and optimise step by step.

procedure TMainForm.DriveComboBox1Change(Sender: TObject);
begin
 DirectoryOutLine1.Drive := DriveComboBox1.Drive;
end;

procedure TMainForm.DirectoryOutline1Change(Sender: TObject);
begin
 FileListBox1.Directory := DirectoryOutline1.Directory;
end;

➤ Listing 2

We’ve also seen special bottom-up
optimisation, a feature introduced
by the re-usable component nature
of Delphi. The source code for the
examples is on this issue’s disk. In
the next part we’ll examine how to
add new functionality and efficient
DLLs to existing applications.

Bob Swart is a professional 16-
and 32-bit software developer
using Borland Pascal, C++ and
Delphi. In his spare time, he likes

to watch video tapes of Star Trek
Voyager with his 1.5 year old son
Erik Mark Pascal. Email Bob on
100434.2072@compuserve.com

Acknowledgements: the first
two parts of this series are based
on my talk in session DL390
(Delphi Performance Optimisa-
tion) at the 6th Annual Borland
Developers Conference, August
6-9 1995, in San Diego, USA.

0.0002 151 if RootNode.HasItems then {if has children, must alphabetise}
 begin
0.1655 146 TempChild := RootNode.GetFirstChild;
11.684 5326 while (TempChild <> InvalidIndex) and
 (Items[TempChild].Text < SearchRec.Name) do
12.076 5180 TempChild := RootNode.GetNextChild(TempChild);
0.1105 146 if TempChild <> InvalidIndex then
0.6892 132 NewChild := Insert(TempChild, SearchRec.Name)
0.0115 14 else NewChild := Add(RootNode.GetLastChild, SearchRec.Name);
0.0001 146 end

➤ Listing 4

procedure TDirectoryOutline.Expand(Index: Longint);
begin
 if Items[Index].Data = nil then
 BuildOneLevel(Index);
 inherited Expand(Index);
end;

➤ Listing 3

function FindIndex(RootNode: TOutLineNode; SearchName: TFileName): LongInt;
var FirstChild,LastChild,TempChild: LongInt;
begin
 FirstChild := RootNode.GetFirstChild;
 if (FirstChild = InvalidIndex) or
 (SearchName <= Items[FirstChild].Text) then FindIndex := FirstChild
 else begin
 LastChild := RootNode.GetLastChild;
 if (SearchName >= Items[LastChild].Text) then FindIndex := InvalidIndex
 else begin
 repeat
 TempChild := (FirstChild + LastChild) div 2; { binary search }
 if (TempChild = FirstChild) then Inc(TempChild);
 if (SearchName > Items[TempChild].Text) then FirstChild := TempChild
 else LastChild := TempChild
 until FirstChild >= (LastChild-1);
 FindIndex := LastChild
 end
 end
end {FindIndex};

➤ Listing 5

42 The Delphi Magazine Issue 4

	Performance Optimisation
	First Things First
	Finding Bottle-Necks
	Algorithms & Data Structures
	Bottom-up Efficiency
	Conclusions

